Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tank farm workers involved in nuclear cleanup activities perform physically demanding tasks, typically while wearing heavy personal protective equipment (PPE). Exoskeleton devices have the potential to bring considerable benefit to this industry but have not been thoroughly studied in the context of nuclear cleanup. In this paper, we examine the performance of exoskeletons during a series of tasks emulating jobs performed on tank farms while participants wore PPE commonly deployed by tank farm workers. The goal of this study was to evaluate the effects of commercially available lower-body exoskeletons on a user’s gait kinematics and user perceptions. Three participants each tested three lower-body exoskeletons in a 70-min protocol consisting of level treadmill walking, incline treadmill walking, weighted treadmill walking, a weight lifting session, and a hand tool dexterity task. Results were compared to a no exoskeleton baseline condition and evaluated as individual case studies. The three participants showed a wide spectrum of user preferences and adaptations toward the devices. Individual case studies revealed that some users quickly adapted to select devices for certain tasks while others remained hesitant to use the devices. Temporal effects on gait change and perception were also observed for select participants in device usage over the course of the device session. Device benefit varied between tasks, but no conclusive aggregate trends were observed across devices for all tasks. Evidence suggests that device benefits observed for specific tasks may have been overshadowed by the wide array of tasks used in the protocol.more » « less
-
In multi-agent systems, limited resources must be shared by individuals during missions to maximize the group utility of the system in the field. In this paper, we present a generalized adaptive self-organization process for multi-agent systems featuring fast and efficient distribution of a consumable and refillable on-board resource throughout the group. An adaptive inter-agent spacing (AIS) controller based on individual resource levels is proposed that spaces out high resource bearing agents throughout the group including the group boundary extrema, and allows low resource bearing agents to adaptively occupy the in-between spaces receiving resource from the high resource bearing agents without over-crowding. Experimental results for cases with and without the proposed AIS controller validate faster convergence of individual resource levels to the group mean resource level using the proposed AIS controller. The generalized approach of the self-organizing process allows flexibility in adapting the proposed AIS controller for various multi-agent applications.more » « less
An official website of the United States government
